Package: bltm 0.1.0

Julio Trecenti

bltm: Bayesian Latent Threshold Modeling

Fits latent threshold model for simulated data and describes how to adjust model using real data. Implements algorithm proposed by Nakajima and West (2013) <doi:10.1080/07350015.2012.747847>. This package has a function to generate data, a function to configure priors and a function to fit the model. Examples may be checked inside the demonstration files.

Authors:Julio Trecenti [cre], Fernando Tassinari [aut], Daniel Falbel [ctb]

bltm_0.1.0.tar.gz
bltm_0.1.0.zip(r-4.5)bltm_0.1.0.zip(r-4.4)bltm_0.1.0.zip(r-4.3)
bltm_0.1.0.tgz(r-4.5-any)bltm_0.1.0.tgz(r-4.4-any)bltm_0.1.0.tgz(r-4.3-any)
bltm_0.1.0.tar.gz(r-4.5-noble)bltm_0.1.0.tar.gz(r-4.4-noble)
bltm_0.1.0.tgz(r-4.4-emscripten)bltm_0.1.0.tgz(r-4.3-emscripten)
bltm.pdf |bltm.html
bltm/json (API)

# Install 'bltm' in R:
install.packages('bltm', repos = c('https://curso-r.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/curso-r/bltm/issues

On CRAN:

Conda:

2.70 score 1 stars 203 downloads 3 exports 7 dependencies

Last updated 5 years agofrom:20304d4a78. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 11 2025
R-4.5-winOKMar 11 2025
R-4.5-macOKMar 11 2025
R-4.5-linuxOKMar 11 2025
R-4.4-winOKMar 11 2025
R-4.4-macOKMar 11 2025
R-4.4-linuxOKMar 11 2025
R-4.3-winOKMar 11 2025
R-4.3-macOKMar 11 2025

Exports:create_prior_parametersltm_mcmcltm_sim

Dependencies:BHmvnfastRcppRcppArmadilloRcppParallelRfastzigg