Package: bltm 0.1.0
bltm: Bayesian Latent Threshold Modeling
Fits latent threshold model for simulated data and describes how to adjust model using real data. Implements algorithm proposed by Nakajima and West (2013) <doi:10.1080/07350015.2012.747847>. This package has a function to generate data, a function to configure priors and a function to fit the model. Examples may be checked inside the demonstration files.
Authors:
bltm_0.1.0.tar.gz
bltm_0.1.0.zip(r-4.5)bltm_0.1.0.zip(r-4.4)bltm_0.1.0.zip(r-4.3)
bltm_0.1.0.tgz(r-4.4-any)bltm_0.1.0.tgz(r-4.3-any)
bltm_0.1.0.tar.gz(r-4.5-noble)bltm_0.1.0.tar.gz(r-4.4-noble)
bltm_0.1.0.tgz(r-4.4-emscripten)bltm_0.1.0.tgz(r-4.3-emscripten)
bltm.pdf |bltm.html✨
bltm/json (API)
# Install 'bltm' in R: |
install.packages('bltm', repos = c('https://curso-r.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/curso-r/bltm/issues
Last updated 4 years agofrom:20304d4a78. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | OK | Nov 11 2024 |
R-4.5-linux | OK | Nov 11 2024 |
R-4.4-win | OK | Nov 11 2024 |
R-4.4-mac | OK | Nov 11 2024 |
R-4.3-win | OK | Nov 11 2024 |
R-4.3-mac | OK | Nov 11 2024 |
Exports:create_prior_parametersltm_mcmcltm_sim
Dependencies:BHmvnfastRcppRcppArmadilloRcppGSLRcppParallelRcppZigguratRfast
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Create the prior parameters. | create_prior_parameters |
MCMC LTM | ltm_mcmc |
Simulate LTM model | ltm_sim |